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Abstract The bisecting GlcNAc is transferred to the core
mannose residue of complex or hybrid N-glycans on glycopro-
teins by the β1,4-N-acetylglucosaminyltransferase III
(GlcNAcT-III) or MGAT3. The addition of the bisecting
GlcNAc confers unique lectin recognition properties to N-
glycans. Thus, LEC10 gain-of-function Chinese hamster ovary
(CHO) cells selected for the acquisition of ricin resistance, carry
N-glycans with a bisecting GlcNAc, which enhances the bind-
ing of the erythroagglutinin E-PHA, but reduces the binding of
ricin and galectins-1, -3 and -8. The altered interaction with
galactose-binding lectins suggests that the bisecting GlcNAc
affects N-glycan conformation. LEC10 mutants expressing
polyoma middle T antigen (PyMT) exhibit reduced growth
factor signaling. Furthermore, PyMT-induced mammary

tumors lacking MGAT3, progress more rapidly than tumors
with the bisecting GlcNAc on N-glycans of cell surface glyco-
proteins. In recent years, evidence for a new paradigm of cell
growth control has emerged involving regulation of cell surface
residency of growth factor and cytokine receptors via interac-
tions and cross-linking of their branched N-glycans with a
lattice of galectin(s). Specific cross-linking of glycoprotein
receptors in the lattice regulates their endocytosis, leading to
effects on growth factor-induced signaling. This review will
describe evidence that the bisecting GlcNAc of N-glycans
regulates cellular signaling and tumor progression, apparently
through modulating N-glycan/galectin interactions.
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Introduction

Glycosylation is the most prevalent post-translational modifi-
cation of membrane-bound and secreted glycoproteins that
traverse the conventional secretory pathway. Most protein
glycosylation is either Asn-linked or initiated by O-linked
GalNAc added to Ser or Thr. The consensus site for N-
glycans has recently been expanded to Phe–Yyy–Asn–Xxx–
Thr in a Type I β-bulge and Phe–Yyy–Zzz–Asn–Xxx–Thr in a
reverse turn (where Yyy can likely be any amino acid andXxx is
any amino acid but Pro) [1, 2]. The ability to predict O-GalNAc
addition to Ser or Thr is improving based on in silico predictions
[3, 4] and experimental determinations [5]. While all N-glycans
have a common core consisting of Man3GlcNAc2Asn, there
is currently no way of predicting the structures of the final
complement of N-glycans on the many glycoforms of a
glycoprotein. However, N-glycan structures may be
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determined by enzymatic release of N-glycans followed by
glycomics analyses using mass spectrometry (MS) including
matrix-assisted laser desorption/ionization-time of flight
(MALDI-TOF) MS, gas chromatography (GC)/MS and tan-
dem MS techniques [6]. Glycoproteomics is used to iden-
tify glycans at specific sites in a glycoprotein [7].

The bisecting GlcNAc is a unique modification of hybrid
or complex N-glycans whose addition is catalyzed by β1,4-
N-acetylglucosaminyltransferase III (GlcNAcT-III) or
MGAT3 (E.C. 2.4.1.144) (Fig. 1a), an activity originally
identified in hen oviduct [8]. In vitro glycosyltransferase
assays indicated that the presence of a bisecting GlcNAc
on a biantennary N-glycan terminating in GlcNAc prevents
the subsequent action of N-glycan branching glycosyltrans-
ferases including GlcNAcT-II, GlcNAcT-IV, and GlcNAcT-
V and the core fucosyltransferase FUT8 [9, 10]. Interesting-
ly, however, glycomics profiling of the N-glycans from
glycoproteins of LEC10 CHO cells that express the Mgat3
gene [11], revealed that many bisected N-glycans carry a
core Fuc, and that N-glycans with up to 17 LacNAc units
have a bisecting GlcNAc [12]. These LacNAc units must be
extensions of branched N-glycans because LEC10 glyco-
proteins bind the lectins E-PHA and L-PHA much better
than glycoproteins from parent CHO cells that do not ex-
press Mgat3 [13, 14]. Therefore, the inhibition of branching
GlcNAc-transferases and FUT8 by the bisecting GlcNAc
observed in vitro, does not occur in a CHO cell Golgi envi-
ronment. Nevertheless, the bisecting GlcNAc profoundly
affects the interaction of LEC10 cells with galactose-binding
plant lectins including ricin [15, 16]. Thus, LEC10 CHO cells
are highly resistant to ricin compared to parent CHO cells
(Fig. 1b). By contrast, they are hypersensitive to the cytotox-

icity of E-PHA and L-PHA, and bind more of these lectins
than parent CHO cells. These data suggest that the bisecting
GlcNAc has a major impact on the conformation of Gal
residues in a bisected N-glycan. Models of N-glycans with
and without a bisecting GlcNAc are consistent with this
proposal [17, 18]. Thus, it is clear that the presence of the
bisecting GlcNAc on the N-glycans of cell surface glycopro-
teins may modulate their interactions with galectins, siglecs or
other glycan binding proteins. These effects may, how-
ever, vary with cell type because overexpression of the
Mgat3 gene has been shown to reduce N-glycan branch-
ing or core fucosylation in some cell types (reviewed in
[19, 20]).

The Mgat3 gene has a unique tissue specific expression
pattern with particularly high levels of transcripts in mouse
brain and kidney, and a moderate level in intestine, based on
Northern blot analyses [21, 22]. Kidney extracts are abun-
dant in E-PHA-binding glycoproteins, consistent with the
presence of the bisecting GlcNAc on N-glycans [14, 21].
Physiological functions of the bisecting GlcNAc have been
proposed for the maintenance of kidney homeostasis [23].
However, mice with targeted inactivation of the Mgat3
gene, are viable and fertile with no gross anatomical or
significant physiological abnormalities [22, 24] (http://
www.functionalglycomics.org), suggesting that modifica-
tion of N-glycans by the bisecting GlcNAc is dispensable
for normal growth and development. Nevertheless, stress
may reveal requirements that reflect predictions for func-
tions of the bisecting GlcNAc. Interestingly, truncated,
inactive MGAT3 produced by disruption of the Mgat3
gene by a neomycin cassette, causes a mild neurological
phenotype in mice [13], suggesting that certain MGAT3

Fig. 1 The bisecting GlcNAc
and lectin binding. a A
proposed complex N-glycan
containing the bisecting
GlcNAc added by MGAT3
expressed in LEC10 cells, and
the β1,6GlcNAc branch initiat-
ed by MGAT5 and absent from
Lec4 mutant cells. b Lectin re-
sistance test of CHO wild type
and LEC10B cells expressing
MGAT3 using the lectins ricin
and E-PHA (adapted from
[14]). c Flow cytometry of
FITC-labeled galectin-3 bind-
ing to CHO, LEC10 or LEC11
cells in the presence or absence
of lactose (courtesy of Santosh
Patnaik [36]). LEC11 cells ex-
press Fut6 and add Fuc to Lac-
NAc to generate the LeX and
SLeX epitopes (Fig. 1a [76])

610 Glycoconj J (2012) 29:609–618

http://www.functionalglycomics.org
http://www.functionalglycomics.org


mutations in humans may have neurological or psychological
effects.

In the past two decades, numerous studies have been direct-
ed towards understanding functions of the bisecting GlcNAc in
modulating cell-cell and cell-matrix interactions, as well as cell
growth control (reviewed in [19, 20, 25]). In this review, we
focus on roles of the bisecting GlcNAc in galectin binding,
growth factor signal transduction and tumor progression.

The bisecting GlcNAc and galectins

While the altered binding of bisected N-glycans to plant
lectins is useful, an important question is whether the bisect-
ing GlcNAc affects interactions of cell surface glycoproteins
and endogenous animal lectins. Galectins belong to a large
family of animal lectins that binds to β-galactosides. At
least 15 galectins have been identified, although not all are
found in every species [26, 27]. Galectins are expressed in
the cytoplasm and nucleus and have been shown to play roles
in intracellular regulation of pre-mRNA splicing [28]. How-
ever, many of their physiological functions in cell prolifera-
tion, survival, adhesion, migration and apoptosis have been
attributed to their actions outside of the cell via glycan binding
to cell surface glycoconjugates on cells, viruses or bacteria
[29]. Lacking a signaling peptide, galectins are secreted via
unconventional mechanism(s), which are poorly understood.
However, some evidence suggests that both the glycan bind-
ing activity of a galectin and binding to ligand on the cell
surface are required for efficient secretion [30, 31].

Galectins are categorized into three subtypes (proto, chi-
mera, and tandem repeat) based on their sequence. All
galectins contain at least one carbohydrate recognition do-
main (CRD) of ~130 amino acids, which interacts with
glycans. Prototype galectins contain one CRD, and are
normally present as a divalent homodimer. They include
galectin-1, -2, -5, -7, -10, -11, -13, -14, and -15. Galectin-3
is the only chimera-type, with a CRD at the C-terminus and
a long flexible N-terminus, which mediates oligomerization
to form a pentameric structure that cross-links bound ligands
[32]. Tandem-repeat type galectins include galectin-4, -6,
-8, -9, -12. They are divalent with two distinct CRDs -
one at the N-terminus and the other at the C-terminus
connected by a linker peptide. Alternative splicing
allows this linker region to be variable in length and
may influence cross-linking potency [7, 32–34]. Further-
more, the presence of two CRDs with different glycan
specificities may allow cross-linking of structurally dis-
tinct subsets of glycans [35, 36].

Complex N-glycans often carry repeating units of N-
acetyl-lactosamine (LacNAc) Galβ1-4GlcNAc that bind
several members of the galectin family [37]. The importance
of LacNAc repeats for galectin binding to cell surfaces was

shown using a series of CHO glycosylation mutants [36,
38]. Lec1 CHO mutants that lack hybrid and complex N-
glycans on cell surface glycoproteins do not bind galectin-1,
-3 or -8. Lec8 CHO mutants, that have no LacNAc units on
N-glycans but carry terminal GalNAc on Ser/Thr residues,
also bind very low amounts of these three galectins. There-
fore, complex N-glycans are the major ligands for galectin-
1, -3 and -8 on CHO cells. The effect of the bisecting
GlcNAc on galectin binding was tested in LEC10 CHO
cells in which most complex N-glycans carry the bisecting
GlcNAc [12]. Binding of galectin-1, -3 and -8 was reduced
to LEC10 compared to parent CHO cells [39]. The inhibi-
tory effect of the bisecting GlcNAc for galectin binding was
observed using fluorescinated galectins and flow cytometry
(Fig. 1c; galectin-3) or using an array-based assay with
glycans attached to a solid surface (Fig. 2; galectin-1). The
effects of the bisecting GlcNAc on galectin binding have
also been tested on chemoenzymatically synthesized bi-
antennary N-glycans attached to BSA [18, 40]. Interestingly,
the bisecting GlcNAc had no effect on the binding of
galectin-4 to BSA-N-glycans, while the binding of
galectin-1 was slightly enhanced and was further potentiated
by the presence of core α1-6-linked fucose with the bisect-
ing GlcNAc [18, 40]. By contrast, the binding of galectin-3
was reduced by the bisecting GlcNAc, consistent with its
reduced binding to LEC10 CHO cells [39] (Fig. 1c). In
another study, the promotion of laminin 332-dependent cell
migration by galectin-3 in keratinocytes was inhibited when
laminin 332 was modified with a bisected N-glycan [41],
further supporting a negative effect of the bisecting GlcNAc
on galectin-3 binding. It is thus clear, that the bisecting
GlcNAc modulates galectin binding to complex N-glycans,
and that it may therefore have functional consequences. It is
also clear that care must be taken in extrapolating in vitro
binding specificities to artificial substrates to specificities
predicted for cell surface glycoproteins that may cluster and
are mobile in the membrane [33].

Complex N-glycans in signal transduction and growth
control

Dennis and colleagues first reported that β1-6GlcNAc-
branched complex N-glycans play important roles in growth
control [42]. β1-6GlcNAc branching is initiated by the
addition of GlcNAc to complex N-glycans by the enzyme
GlcNAcT-V, encoded by the Mgat5 gene (Fig. 1a). When
Mgat5 was ablated in transgenic mice overexpressing the
polyoma middle T (PyMT) oncogene under the control of
the mouse mammary tumor virus (MMTV) promoter, mam-
mary tumor development and progression to lung metastasis
were markedly reduced [42]. While the increase in
β1-6GlcNAc-branched N-glycans had previously been
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noted in tumor formation [43], the report in 2000 was the
first to present direct evidence suggesting that reducing the
degree of N-glycan branching retards tumor progression.
Importantly, a mechanism was subsequently proposed
whereby branched N-glycans promote the interaction of
growth factor/cytokine receptors (e.g., epidermal growth
factor receptor (EGFR) and transforming growth factor-β
(TGF-β) receptor) with galectin-3, thereby enhancing their
cell surface residency time by preventing their loss due to
constitutive endocytosis [44]. This in turn will increase the
number of growth factor receptors on the cell surface that
are available to respond to their respective ligands, leading
to increased and prolonged ligand-induced signaling. This
mechanism is supported by modeling studies [45] and inves-
tigations of autoimmunity modulated by surface residency
of cytotoxic T-lymphocyte antigen 4 (CTLA4) [46, 47]. The
retention of cell surface proteins by a galectin lattice has also
been implicated in glucose homeostasis. For example,
galectin-9 stabilizes glucose transporter 2 (GLUT2) on the
cell surface increasing its half-life life in pancreatic β cells
[48]. Reduced N-glycan branching due to the loss of
MGAT4a or GLUT2 results in the development of diabetes
[49]. Furthermore, the integrity of corneal epithelium that
relies on cell surface signaling by vascular endothelial
growth factor receptor 2 (VEGFR2) is dependent on inter-
actions of branched N-glycans on VEGFR2 with galectin-3
[50]. In each of these cases, modification of a cell surface
glycoprotein by highly branched N-glycans is essential to
assure its optimal interactions with galectin(s). It should be
noted, however, that roles for galectins in growth factor sig-
naling may vary with cell context. Thus, the EGFR in human
cancer cell lines with reducedMGAT5 activity and reducedN-
glycan branching, does not exhibit enhanced ligand-induced
endocytosis, but nevertheless shows impaired signal transduc-
tion that occurs primarily from endosomes in these cells [51].
The effect of branched N-glycans on growth factor signaling
in this case appears to be galectin independent.

Galectin interactions with branched N-glycans may also
function in regulating integrin-mediated cell motility. For
example, galectin-3 stimulates α5β1 integrin-mediated activa-
tion of focal adhesion kinase (FAK) and phosphoinositide-3-
kinase (PI3K) through its interactions with branched N-
glycans of glycoproteins. This leads to increased fibronectin
fibrillogenesis and fibronectin-dependent tumor cell spreading
and motility, which may explain metastasis in MGAT5-
expressing tumor cells [52]. α3β1 integrin is also activated
by the interaction of galectin-3 with complex N-glycans to
promote lamellipodia formation in corneal epithelial cells
[53]. In general, cells with integrins carrying bisected
branched N-glycans exhibit reduced migratory activity
(reviewed in [19, 25, 54, 55]). In these cells, the addition of
a bisecting GlcNAc concomitantly reduces β1-6GlcNAc
branching, as indicated by reduced L-PHA binding to integrin

subunits. This presumably reflects the fact that MGAT5 and
other N-glycan branching glycosyltransferases may not utilize
bisected N-glycans as acceptor substrates in certain cells [9].
Together, these studies suggest that the bisecting GlcNAc of
complex or hybrid N-glycans may regulate biological func-
tions of glycoproteins by altering N-glycan conformation,
branching or composition, leading to reduced galectin binding.

The bisecting GlcNAc in growth factor signaling

Overexpression of Mgat3 in various cell lines has yielded
valuable information on potential functions of MGAT3 in
cell growth control and growth factor signaling. Bisected N-
glycans are found on EGFR, which is often deregulated in
cancer and plays key roles in the control of cell proliferation.
In human U373 MG glioma cells, transfection of an Mgat3
cDNA causes reduced EGF binding and decreased EGFR
autophosphorylation, but stimulates cell proliferation [56].
Overexpression of Mgat3 in Hela S3 cells increases signal-
ing as shown by increased phosphorylation of extracellular
signal-regulated kinase (ERK), and this correlates with re-
duced EGF binding, but increased EGFR endocytosis [57].
However, there is no change in EGFR dimerization or
autophosphorylation in Mgat3-transfected Hela S3 cells. In
PC2 neuronal cells, when Mgat3 is overexpressed, there is
again a significant decrease in EGF binding and EGFR
autophosphorylation, but this is accompanied by a decrease
in ERK activation required for EGFR- and integrin-
mediated neurite outgrowth [58]. Together, these results
suggest that, while the bisecting GlcNAc of complex N-
glycans affects EGFR-mediated signaling, the consequences
vary with cell type, indicating that different mechanisms
may underlie the effects of the bisecting GlcNAc on EGFR
and other growth factor receptor signaling in different cel-
lular environments.

One caveat of experiments with transfected Mgat3 is that
the overexpression of Mgat3 under a strong promoter may
cause non-physiological effects. Therefore, LEC10 CHO
mutants, that express Mgat3 from the endogenous CHO
gene [11], provide a platform to study more physiological
effects of the bisecting GlcNAc. Functions of the bisecting
GlcNAc in cell growth control and growth factor signaling
were compared between LEC10 CHO cells, wild type CHO
cells that lack MGAT3 and bisected N-glycans, Lec4 CHO
mutant cells lacking MGAT5 and β1-6GlcNAc-branched,
as well as, bisected N-glycans, and Lec8 CHO mutant cells
lacking LacNAc extensions of all N-glycan branches [39].
These cells were shown to bind galectins in the following
order: CHO>LEC10>Lec4>Lec8. While these lines prolif-
erate at a similar rate in medium containing 10% serum,
each mutant grew slower than wild type in 7.5% serum [14].
To mimic conditions in PyMT-induced tumors, the CHO
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cells were transfected with PyMT. The growth rate of
LEC10B/PyMT remained slower that that of CHO/PyMT
cells, but slightly faster than Lec4/PyMT and Lec8/PyMT.
To investigate growth factor signaling, the PyMT-
expressing CHO lines were stimulated by platele-derived
growth factor AB (PDGF-AB), since CHO cells express
PDGFR but not EGFR. Responsiveness to PDGF-AB was
significantly reduced in LEC10B/PyMT and Lec4/PyMT
cells based on reduced ERK1/2 phosphorylation. For
Lec8/PyMT cells, that do not bind galectins, there was no
detectable response to PDGF-AB. When growth factor re-
sponsiveness was compared after treating the cells with
lactose to remove surface-bound galectins, or sucrose as
control, cells treated with lactose showed markedly reduced
ERK1/2 activation, while sucrose treatment had no effect.
Together, these results provide evidence for essential roles
of growth factor receptor/galectin-lattice interactions in
growth factor signaling in the CHO/PyMT lines. Therefore,
it appears that the bisecting GlcNAc on N-glycans reduces
growth factor signaling in a galectin-dependent manner
(Fig. 3).

The bisecting GlcNAc in tumor progression

Evidence from cell-based assays and in vivo studies has
shown that the bisecting GlcNAc may affect tumor progres-
sion and metastasis. In initial studies using tumor cell lines,
overexpression of Mgat3 in a highly metastatic subclone of
B16 melanoma cells resulted in significant suppression of
lung colonization, which correlated with a decrease in
β1-6GlcNAc branching [59]. By contrast, tumor growth
and metastasis to spleen was increased in the same cell model,
mediated in part by CD44-hyaluronan interactions enhanced
by the bisecting GlcNAc on CD44 [60]. Furthermore, a K562
leukemia cell line overexpressing Mgat3 was resistant to
natural killer cell cytotoxicity and showed increased spleen
colonization [61]. Studies using transgenic mouse models
expressing Mgat3 in liver also gave variable results.

In rat liver, Mgat3 expression is upregulated during
chemically-induced hepatocarcinogenesis [62, 63], prompt-
ing an investigation into the function of Mgat3 in tumori-
genesis induced by diethylnitrosamine (DEN). In mice
overexpressing Mgat3 in liver under the control of the
serum amyloid P component gene promoter, DEN-induced
tumor incidence was significantly reduced [64]. On the
other hand, no significant change in tumor incidence was
observed in mice overexpressingMgat3 under the control of
the major urinary protein (MUP) promoter following treat-
ment with DEN and phenobarbitol (PB)[65]. Additionally,
tumor progression was retarded in mice with a targeted
Mgat3 mutation after DEN alone or DEN and PB treatments
[65, 66]. This appeared to be due to a non cell-autonomous

mechanism since overexpression of Mgat3 in hepatocytes
did not restore tumor progression to the levels obtained in
wild type mice [65].

A direct role for the promotion of tumor progression by
complex N-glycans has been established in mammary
tumors induced by PyMTexpressed from the MMTV/PyMT
transgene [67]. In Mgat5 null mice that lack the
β1-6GlcNAc branch of complex N-glycans (Fig. 1a), mam-
mary tumor progression is greatly inhibited due to reduced
growth factor signaling that can be restored by introduction
of an Mgat5 cDNA into Mgat5 null tumor epithelial cells
[44]. The consequence of MGAT5 deficiency in HER2-
induced mammary tumorigenesis has also been investigated.
As observed in the MMTV/PyMT transgenic model, mam-
mary tumor cells lacking Mgat5 have reduced ERK1/2 and
Akt/protein kinase B (PKB) activation [68]. Furthermore, in
this case MGAT5 was implicated in tumor initiation and
tumor onset. In humans, increased expression of complex
N-glycans with β1-6GlcNAc branching is observed in
breast and colorectal carcinomas, and the degree of expres-
sion correlates with the stage of progression of the cancer
[69].

Because LEC10 CHO cells with the bisecting GlcNAc to
N-glycans exhibit a reduced growth rate that persists when
they overexpress the PyMT oncogene [14] and this corre-
lates with reduced galectin-lattice dependent growth factor
signaling, it was hypothesized that PyMT-induced mamma-
ry tumor progression might be enhanced in mice null for the
Mgat3 gene. Mgat3 is not expressed in virgin mammary
glands, however, its expression is upregulated during lacta-
tion and this is reflected by enhanced E-PHA binding to
glycoproteins from mammary gland tissue lysates.

To investigate the effects of MGAT3 and the bisecting
GlcNAc in tumor progression, MMTV/PyMT transgenic
mice lacking MGAT3 were analyzed [14]. Mgat3 gene
expression is observed in MMTV/PyMT mammary glands
by around 4–5 weeks. Tumor onset and tumor sizes at
17 weeks are significantly enhanced in Mgat3 null mice.
The first palpable tumor appears ~7 days earlier in mice
lacking MGAT3. In addition, lung metastasis evaluated by
the presence of PyMT transcripts in the lung, is significantly
higher in Mgat3 null mice in the early stages of tumorigen-
esis, suggesting accelerated lung metastasis in the absence
of MGAT3. Moreover, tumor cells isolated from Mgat3 null
mice are more responsive to EGF- and PDGF-AB-induced
growth factor signaling. Finally, an in vivo cell migration
assay demonstrated that mammary tumor cells lacking
MGAT3 have a higher migratory activity, with or without
stimulation by EGF. Rescue of the Mgat3 null phenotype
was evaluated by overexpressing Mgat3 in mammary gland
under the control of MMTV promoter. Early-stage tumor
development was delayed in the Mgat3 transgenic mice and
they also exhibited reduced cell migratory activity in the in
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vivo cell migration assay. Thus, MGAT3 and the presence of
the bisecting GlcNAc on mammary glycoproteins, reduces
mammary tumor progression in a cell-autonomous manner.
Based on the fact that the bisecting GlcNAc reduces galectin
binding (Figs. 1 and 2), we propose that MGAT3 and the
bisecting GlcNAc reduce galectin-lattice dependent growth
factor signaling leading to retarded mammary tumor pro-
gression as depicted in the model in Fig. 3.

The galectin lattice

While galectins have been widely implicated as regulators
of cell signaling [70], it remains unclear how galectin spec-
ificity is determined. The simple CHO cell synthesizes N-
glycans with up to 26 LacNAc units [12], and all 15 galec-
tins bind to LacNAc. The loss of one N-glycan branch and
its associated LacNAc units, or the addition of the bisecting
GlcNAc, reduces the binding of galectins, as discussed
above. But how does this affect the nature of the predicted
galectin lattice, which may include multiple galectins,
depending on cell type? Thus, while the interaction of
galectin-3 with growth factor receptors is proposed as part
of the mechanism by which MGAT5 regulates growth factor
signaling [44], genetic ablation of galectin-3 has no effect
on mammary tumor progression [71]. If the enhancement of
tumor growth and metastasis by MGAT5 were mediated
solely by galectin-3, one would expect galectin-3 null mice
to exhibit reduced tumor progression. It seems likely that
one or more other galectins play a role in galectin-dependent
cellular signaling, compensating for the absence of galectin-
3. We have observed that eight galectin genes (galectin-1, -
2, -3, -4, (−6), -7, -8, -9, and, -12) are expressed in mouse
mammary tumor tissue (unpublished), and thus any combi-
nation, or all eight, could be involved in forming galectin
lattices on the cell surface. In vitro titration experiments
using concanavalin A have shown that structurally distinct

Fig. 3 Model of galectin-dependent PDGFR signaling in CHO cells.
Higher order clustering of PDGFRs on the CHO cell surface may be
achieved through galectin-N-glycan interactions, which are thought to
form a lattice that restrains endocytosis and promotes optimal ERK1/2
activation. Complex N-glycans on wild type CHO cells have the most
binding sites for galectins and the greatest response to PDGF-AB.
ERK1/2 activation is reduced in LEC10B cells that add the bisecting
GlcNAc to complex N-glycans, and in Lec4 cells that lack a branch of

complex N-glycans, and occurs at background levels in Lec8 cells that
have few if any LacNAc units on complex N-glycans. Signaling
strength correlates with the degree of interaction with the galectin
lattice. Binding of N-glycans to galectin-3 pentamers is shown as an
example, although other galectins are likely to participate in CHO
galectin lattice(s). See Fig. 2 for complex N-glycan structures typical
of CHO mutant cells

�Fig. 2 Galectin-1 binding to CHO and glycosylation mutants. CHO
cell lines (CHO, Lec1, LEC10, and Lec4) grown in monolayer or
suspension culture were washed, biotinylated, harvested and fixed.
The biotinylated cells (50,000 cells/well) were arrayed on
neutravidin-coated black ELISA plates. A subset of biotinylated gly-
cans from the Consortium for Functional Glycomics (CFG) Glycan
Array version 2.3, including known binders and non-binders to
galectin-1, were also arrayed on the same plate at a concentration of
60 pmol/well. Alexa-488 labeled human galectin-1 (30 μg/ml) was
applied to each well in binding buffer (20 mm Tris–HCl, pH 7.4,
150 mm NaCl, 2 mm CaCl2, 2 mm MgCl2, and 0.05% Tween 20 with
1% bovine serum albumin (BSA)) and incubated for 1 h at room
temperature. After galectin-1 removal, plates were washed three times
with binding buffer lacking BSA and relative fluorescence units mea-
sured. Structures of complex N-glycans typical of CHO mutant cells
and a subset of glycans on the array are shown. CHO cells contain
β1,6GlcNAc branched complex N-glycans that lack the bisecting
GlcNAc; Lec1 cells have no complex N-glycans; LEC10/LEC10B
cells contain complex N-glycans modified with the bisecting GlcNAc;
Lec4 cells lack both β1,6GlcNAc branched N-glycans and the bisect-
ing GlcNAc. A typical Lec8 mutant complex N-glycan is shown as it is
included in the model in Fig. 3. See Fig. 1a for glycan symbols. NC, no
cells or compound; PBS, phosphate buffered saline (no galectin-1)
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and separable lattices are formed by Con A and Man5-
GlcNAc2 versus Con A and Man6GlcNAc2 [72]. Therefore,
a range of intricate cross-linked lattices of different structure
may potentially be formed by galectins and N-glycans,
depending on fine glycan binding specificity, concentration
and many other factors. Imaging such galectin lattices and
determining the nature and specificity of their cross-linked
structures is a key challenge for the future. Only then will it
be possible to understand how the complement of galectins
at the cell surface may function, alone or in concert, to
control growth factor signaling, and how this control is
altered by the presence of the bisecting GlcNAc on complex
N-glycans.

Conclusions

In recent years, it has become apparent that complex N-
glycans play pivotal roles in growth factor signaling and
tumor progression. At the cell surface, the LacNAc units of
N-glycans are cross-linked by galectins. We and others have
shown that the bisecting GlcNAc on complex N-glycans
modulates galectin interactions and thereby presumably
affects galectin-lattice structure, the turnover of growth fac-
tor receptors and downstream signaling. Interestingly, the
human MGAT3 gene is located on chromosome 22q13.2, in
a region for which loss of heterozygosity has been associ-
ated with breast and colorectal cancer [73–75]. Thus, under-
standing the mechanisms by which MGAT3 and the
bisecting GlcNAc alter growth factor signaling, tumor
growth and metastasis may lead to prognostic or diagnostic
assays for human cancers.
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